⁸¹Br and ¹²⁷I NQR of Rare Earth Trihalogenides REX₃, X = Br, I*

T. A. Babushkina, A. A. Boguslavsky, and A. G. Dudareva Institute of Biophysics, Ministry of Health, Moscow, USSR

Z. Naturforsch. 41 a, 190-191 (1986); revised version received November 5, 1985

The ^{81}Br NQR spectra of REBr₃, RE = Dy, Ho, Yb, Sm, and the ^{127}I NQR spectra of REI₃, RE = Dy, Ho, Sm, are reported. Additionally ^{127}I NQR data of RbHoI₄, KSmI₄, and Rb₃Sm₂I₉ are given. The line shape of the ^{127}I NQR of HoI₃ was studied in external magnetic fields up to 300 Gauss.

Introduction

Trihalogenides of rare earth elements show some differences in their crystal lattices. The chlorides and bromides of the light rare earth elements LaCl₃...GdCl₃; LaBr₃...PrBr₃, are isomorphous to UCl₃ [1]. The trichlorides of the heavy rare earth elements are isomorphous to AlCl₃ and the corresponding tribromides crystallize with the FeCl₃ type structure [2, 3]. Several tribromides REBr₃ (RE = Nd, Eu, Sm, Tb) and the iodides REI₃ (RE = La, Ce, Pr, Nd) are isomorphous to PuBr₃, whereas the majority of the REI₃ shows the BiI₃ type structure [4, 5].

NQR is quite a sensitive method with respect to details in the structure of the electrons surrounding the resonating nuclei, and changes in the crystal structure can easily be detected.

Results and Discussion

We have studied several tribromides and triiodides of rare earth elements, and a few compounds formed by rare earth triiodides and alkali iodides. In Table 1 the 81 Br and 127 I NQR frequencies are listed for T = 77 K (in a few cases for 290 K, too).

Since the compounds DyBr₃, HoBr₃, and YbBr₃, are isomorphous to FeCl₃ ($C_{3i}^2 - R\bar{3}$, Z = 6), a single line ⁸¹Br NQR spectrum is expected and the experimental results are in accordance with this expecta-

Reprint requests to T. A. Babushkina, Institute of Biophysics, Ministry of Health, Moskau/UDSSR.

tion (see Table 1). $v(^{81}\text{Br})$ increases with decreasing distance M-Br (d(Dy-Br) = 2.836 Å; d(Ho-Br) = 2.825 Å); d(Yb-Br) = 2.798 Å). A small electric field gradient, EFG, is expected at the site of the rare earth ion since RE is surrounded by 6 Br-atoms in almost regular octahedral coordination.

SmBr₃ crystallizes in the orthorhombic system (D_{2h}¹⁷-Ccmm, Z = 4) [3] and the Br-atoms occupy the point positions 4 c and 8 f.

The ⁸¹Br NQR spectrum is in agreement with the conclusion which follows from the crystal structure. Two ⁸¹Br lines are found, the higher frequency line corresponding to the Br atoms at 4 c; the lower frequency line (position 8 f) shows double intensity.

Sometimes ago Parks and Moulton [6] studied NdBr₃ by NQR. They observed two resonance frequencies for ⁸¹Br and determined the asymmetry parameter of both EFG tensors. At the side 4 c they found $\eta = 6.8\%$ and at the site 8 f $\eta = 48.7\%$.

The rare earth triiodides studied by us have the BiI₃ type structure. As can be seen from Table 1, the asymmetry parameter of the EFG at the iodine site

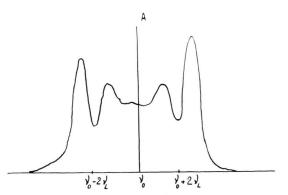


Fig. 1. The line form of NQR 127 I ($\Delta m = 3/2 - 5/2$) in the polycrystalline sample of HoI₃ located in the external magnetic field $3 \cdot 10^{-2}$ T. $v_{\rm L} = {\rm Larmor\ frequency}$.

0340-4811 / 86 / 0100-0190 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^{*} Presented at the VIIIth International Symposium on Nuclear Quadrupole Resonance Spectroscopy, Darmstadt, July 22-26, 1985.

Table 1. NOR frequencies of ⁸¹Br and ¹²⁷I, quadrupole coupling constants, $e^2 \Phi_{-1} O h^{-1}$ (¹²⁷I), and asymmetry parameters $\eta(^{127}I)$, in some trihalogenides of the rare earth elements. $\nu(^{81}Br)$ at

Substance	$v(^{81}\mathrm{Br})/\mathrm{MHz}$				
DyBr ₃ HoBr ₃ YbBr ₃ SmBr ₃	30.36 31.194 34.224 24.985 46.665				
Substance	$v(^{127}I)/MHz,$ $\Delta m = 1/2 - 3/2$	$v(^{127}I)/MHz$, $\Delta m = 3/2 - 5/2$	$\frac{e^2 \Phi_{zz} Q h^{-1}}{\text{MHz}}$	η (%)	T/K
DyI ₃	42.15 42.24	83.33 82.80	276.7 278.3	9.5 13.5	77 290
HoI ₃	43.46 43.50	85.84 85.23	286.7 286.8	10.0 14.0	77 290
SmI_3	36.72	72.76	242.5	9.0	300
RbI·HoI ₃	38.19	74.30	248.2	15.0	77
$KI \cdot SmI_3$	41.09	80.64	270.3	12.5	77
$3RbI \cdot 2SmI_3$	34.01 46.49	63.29 86.94	214.4 294.1	24.0 23.0	77

is rather small ($\approx 10\%$). This points out that there is a small deviation of the iodine positions from the ideal BiI₃ type structure in which the point symmetry of the iodine would be 3 ($\eta \equiv 0$).

For SmI₃ the ¹²⁷I NQR frequency $(1/2 \rightleftharpoons 3/2)$ was found to increase very little with decreasing temperature ($\sim 0.012 \, \text{kHz/degree}$). In the range $110 \le T/K \le 120$ the intensity of the line becomes very weak and at T = 77 K no ¹²⁷I NQR signal was detected in the range $50 \le v/MHz \le 150$.

 HoI_3 shows a very strong transition $3/2 \rightleftharpoons 5/2$ and the signal to noise ratio is 100 on the oscilloscope. The ¹²⁷I Zeeman spectrum on polycrystalline material was studied at 77 K in a field $B_0 = 3 \cdot 10^{-2} \,\mathrm{T}$ $(B_0 || B_{HF})$. It was found that the shape of the band is very similar to that found for Sb in Sb₂O₃ and Re in NaReO₄ [7], but different from the shape expected in case of negligible dipole-dipole interactions. This effect can be observed by comparing the ³⁵Cl Zeeman NQR powder spectrum of NaClO₃ and KClO₃, where in the latter compound dipolar interactions are very small.

The 127I NQR Zeeman powder spectrum $(3/2 \rightleftharpoons 5/2)$ of SmI₃ is shown in Figure 1. It seems to be of interest to elaborate the theory of NQR line shape by incorporating dipole-dipole interactions.

W. H. Zachariasen, Acta Cryst. 1, 265 (1948).

A. A. Men'kov and L. N. Komissarova, Zh. Neorg. Khim. 9, 1759 (1964).

^[3] J. M. Haschke, Inorg. Chem. 15, 298 (1976).
[4] L. B. Asprey, T. K. Keenan, and F. H. Kruse, Inorg. Chem. 3, 1137 (1964).

^[5] B. H. Krause, A. B. Hook, and F. Wawner, A. 16,848 (1963).

^[6] S. I. Parks and W. G. Moulton, Phys. Letters. 26 A, 63 (1967).

^[7] A. A. Boguslawsky and G. K. Semin, Zh. Fiz. Khim. 53, 33 (1979).